Notch-Dependent Pituitary SOX2+ Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland
نویسندگان
چکیده
Although SOX2(+) stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2(+) stem cells and hypoplastic gland. Furthermore, we show that the SOX2(+) stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2(+) stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion.
منابع مشابه
Notch Signaling and Maintenance of SOX2 Expression in Rat Anterior Pituitary Cells
After publication of reports describing the presence of stem/progenitor cells among non-hormone-producing cells in the pituitary, the mechanism responsible for proliferation and differentiation generated considerable interest. Several studies have suggested that Notch signaling is involved. In the present study, we examined the histochemical relationship between Notch signaling molecules and th...
متن کاملExpression of Krüppel-Like Factor 6, KLF6, in Rat Pituitary Stem/Progenitor Cells and Its Regulation of the PRRX2 Gene
Paired-related transcription factors, PRRX1 and PRRX2, which are present in mesenchymal tissues and participate in mesenchymal cell differentiation, were recently found in the stem/progenitor cells of the pituitary gland of ectodermal origin. To clarify the role of PRRX1 and PRRX2 in the pituitary gland, the present study first aimed to identify transcription factors that regulate Prrx1 and Prr...
متن کاملSignificant Quantitative and Qualitative Transition in Pituitary Stem / Progenitor Cells Occurs during the Postnatal Development of the Rat Anterior Pituitary
We reported recently that a pituitary-specific transcription factor PROP1 is present in SOX2-positive cells and disappears at the early stage of the transition from progenitor cell to committed cell during the embryonic development of the rat pituitary. In the present study, we examined the localisation and identification of SOX2-positive and PROP1/SOX2-positive cells in the neonatal and postna...
متن کاملEMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration
Epithelial-mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in t...
متن کاملA GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary
BACKGROUND The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015